ROYALOHM

$\begin{array}{llllllllllllllllllll}C & O & N & F & I & D & E & N & T & I & A & L & D & O & C & U & M & E & N & T\end{array}$ SPECIFICATION FOR APPROVAL

TRELIK

Description : Thick Film Chip Resistors (Terminal Lead Free)

Royalohm Part no.:
25121WxxxxxT4E (RMC 1W (2512) $+/-1 \%, 5 \%$ \& Jumper)

Approved by

Parts corresponding to RoHS Compliant: 2005-Apr.-1

Royal Electronic Factory (Thailand) Co., Ltd.
20/1-2 Moo 2 Klong-Na, Muang
Chachoengsao 24000, Thailand
Tel: +66-38-822404-8
Fax: +66 38-981190 / 823765
E-mail Address: Export sales: Export@royalohm.com
Local sales: Local@royalohm.com
http://www.royalohm.com
P.O. Box 251 Klongchan, Bangkok 10240, Thailand

Approved	Checked	Prepared
Mr. Jack Lin	Mr. S. Polthanasan	Ms. P. Supatta

Issue Date: 2015/01/10

CONFIDENTIAL DOCUMENT

CHANGE NOTIFICATION HISTORY			
Version	Date of Version	History	Remark
1	2015/01/10	1. Chip series (2512) @ 1W	
		2. Resistance tolerance: $\pm 1 \%, \pm 5 \%$ \& Jumper	
		3. Temperature coefficient $1 \Omega-10 \Omega$: $\pm 400 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	
		$11 \Omega-100 \Omega: \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	
		$>100 \Omega$: $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	

1. Scope:

This specification for approval relates to Thick Film Chip Resistors (Terminal Lead Free) manufactured by ROYALOHM 's specifications.
2. Type designation:

The type designation shall be in the following form:

| Ex. \quad Type | Power Rating | Resistance tolerance | Nominal Resistance |
| :---: | :---: | :---: | :---: | :---: |
| RMC 2512 | 1 W | $\mathrm{~F}, \mathrm{~J}$ | $1 \mathrm{~K} \Omega$ |

3. Ratings:

Type	RMC 2512
Power Rating	1 W
Rated Current (Jumper)	2.5 A
Max. Overload Current (Jumper)	10 A
Max. Working Voltage	200 V
Max. Overload Voltage	500 V
Dielectric Withstanding Voltage	500 V
Temperature Range	$-55^{\circ} \mathrm{C} \sim+155^{\circ} \mathrm{C}$
Ambient Temperature	$70^{\circ} \mathrm{C}$

3.1 Power rating:

Resistors shall have a power rating based on continuous load operation at an ambient temperature of $70{ }^{\circ} \mathrm{C}$. For temperature in excess of $70^{\circ} \mathrm{C}$, The load shall be derate as shown in figure 1 .

Figure 1

3.2 Nominal Resistance

Effective figures of nominal resistance shall be in accordance with E-24 and E-96 series.
E-96 series for 1% and E-24 series for $2 \%, 5 \%$.
4. Construction :

5. Power rating and dimensions

Dimension :

Type	Dimension (mm)				
	$\mathrm{L} \pm 0.10$	$\mathrm{~W} \pm 0.15$	$\mathrm{H} \pm 0.10$	$\ell 1 \pm 0.25$	$\ell 2 \pm 0.20$
RMC 2512	6.35	3.20	0.55	0.60	0.50

Power Rating :

Type	Power Rating at $70{ }^{\circ} \mathrm{C}$	Tolerance $\%$	Resistance Range	Standard Series
RMC 2512	1 W	Jumper	$<50 \mathrm{~m} \Omega$	
		± 1	$10 \Omega \sim 1 \mathrm{M} \Omega$	E-96
		± 5	$1 \Omega \sim 10 \mathrm{M} \Omega$	E-24

Thick Film Chip Resistors (Terminal Lead Free)

6. Marking :
6.1 Resistors
A. Marking for E-96 series in 2512 size : 4 Digits
*The first 3 digits are singnificant figures of resistance and the 4th digit denoted number of zeros.

Ex.
 $100 \mathrm{~K} \Omega$
*For ohmic values below 100Ω, letter" R " is for decimal point.

Ex.

B. Marking for E-24 series in 2512 size : 3 Digits
*The first 2 digits are singnificant figures of resistance and the 3rd digit denoted number of zeros.

*For ohmic values below 10Ω, letter"R" is for decimal point.

Ex.

6.2 Labels

Label shall be marked with the following item :
A. Nominal Resistance and Resistance Tolerance
B. Power Rating and Size
C. Quantity
D. Part No.
E. P.O.No.
F. Lot No.

Ex.

ROYALOHM Chip Resistors		
Resistance :	$1 \mathrm{~K} \quad \Omega$	$\pm 5 \%$
Wattage :	1W	Size : 2512
Quantity :	4000 Pcs.	100 PPM
Part No.:		
Lot No. 825723 25121WJ0102T4E	825723 25121WJ0102T4E	

Remark : Label is 1 K , value is $1 \mathrm{~K} \Omega$, marking is 102

CONEIDENTIAL DOCUMENT
Thick Film Chip Resistors (Terminal Lead Free)

7. Performance specification :

Characteristics	Limits	Test Methods (JIS C 5201-1)
*Insulation resistance	$1,000 \mathrm{M} \Omega$ or more	Apply 500 V DC between protective coating and termination for 1 min , then measure (Sub-clause 4.6)
*Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down	Apply 500 V AC between protective coating and termination for 1 minute (Sub-clause 4.7)
Temperature coefficient	$\begin{aligned} & 1 \Omega-10 \Omega: \pm 400 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & 11 \Omega-100 \Omega: \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & >100 \Omega: \pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \end{aligned}$	Natural resistance change per temp. degree centigrade. $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R} 1(\mathrm{t} 2-\mathrm{tl})} \times 10^{6} \quad\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ R1: Resistance value at room temperature (t 1) R2: Resistance value at room temp. plus $100^{\circ} \mathrm{C}$ (t2) (Sub-clause 4.8)
Short time overload	Resistance change rate is $\begin{aligned} & \pm 5 \%(2.0 \%+0.1 \Omega) \text { Max. } \\ & \pm 1 \%(1.0 \%+0.1 \Omega) \text { Max. } \end{aligned}$	Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds (Sub-clause 4.13)
*Solderability	95% coverage Min.	Test temperature of solder : $245 \pm 3^{\circ} \mathrm{C}$ Dipping them solder : 2-3 seconds (Sub-clause 4.17)
Soldering temp. reference	Electrical characteristics shall be satisfied. Without distinct deformation in appearance. (95% coverage Min.)	Wave soldering condition: (2 cycles Max.)
		Pre-heat : $100 \sim 120{ }^{\circ} \mathrm{C}, 30 \pm 5 \mathrm{sec}$. Suggestion solder temp.: $235 \sim 255{ }^{\circ} \mathrm{C}, 10 \mathrm{sec}$. (Max.) Peak temp.: $260{ }^{\circ} \mathrm{C}$ Reflow soldering condition: (2 cycles Max.) Pre-heat : $150 \sim 180{ }^{\circ} \mathrm{C}, 90 \sim 120 \mathrm{sec}$. Suggestion solder temp.: $235 \sim 255{ }^{\circ} \mathrm{C}, 20 \sim 40 \mathrm{sec}$. Peak temp.: $260{ }^{\circ} \mathrm{C}$ Hand soldering condition: The soldering iron tip temperature should be less than $300^{\circ} \mathrm{C}$ and maximum contract time should be 5 sec .

CONFIDENTIAL DOCUMENT
Thick Film Chip Resistors (Terminal Lead Free)
7. Performance specification :

Characteristics	Limits	$\begin{aligned} & \text { Test Methods } \\ & \text { (JIS C 5201-1) } \end{aligned}$		
Soldering Heat	Resistance change rate is: $\pm(1 \%+0.05 \Omega) \text { Max. }$	Dip the resistor into a solder bath having a temperature of $260^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ and hold it for 10 ± 1 seconds. (Sub-clause 4.18)		
Temperature cycling	Resistance change rate is$\begin{aligned} & \pm 5 \%(1.0 \%+0.05 \Omega) \text { Max. } \\ & \pm 1 \%(0.5 \%+0.05 \Omega) \text { Max. } \end{aligned}$	Resistance change after continuous 5 cycles for duty cycle specified below		
		Step	Temperature	Time
		1	$-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$	30 mins
		2	Room temp.	$10 \sim 15 \mathrm{mins}$
		3	$+155^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$	30 mins
		4	Room temp.	$10 \sim 15$ mins
		(Sub-clause 4.19)		
Load life in humidity	Resistance change rate is $\begin{aligned} & \pm 5 \%(3.0 \%+0.1 \Omega) \text { Max. } \\ & \pm 1 \%(1.0 \%+0.1 \Omega) \text { Max. } \end{aligned}$	Resistance change after 1,000 hours (1.5 hours "on", 0.5 hour "off") at RCWV in a humidity chamber controlled at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and 90 to 95% relative humidity (Sub-clause 4.24.2.1)		
Load Life	Resistance change rate is $\begin{aligned} & \pm 5 \%(3.0 \%+0.1 \Omega) \text { Max. } \\ & \pm 1 \%(1.0 \%+0.1 \Omega) \text { Max. } \end{aligned}$	Permanent resistance change after 1,000 hours operating at RCWV, with duty cycle of (1.5 hours"on", 0.5 hour"off") at $70^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ambient (Sub-clause 4.25.1)		
Terminal bending	Resistance change rate is $\pm(1.0 \%+0.05 \Omega)$ Max.	Twist of Test Board : $\mathrm{Y} / \mathrm{X}=5 / 90 \mathrm{~mm}$ for 10 seconds (Sub-clause 4.33)		

The resistors of 0Ω only can do the characteristic noted of *

8. Packing specification :

* Taping Dimension (mm)

Type	$\mathrm{A} \pm 0.2$	$\mathrm{~B} \pm 0.2$	$\mathrm{C} \pm 0.05$	$\phi \mathrm{D}+0.1$ -0	$\mathrm{E} \pm 0.1$	$\mathrm{~F} \pm 0.05$	$\mathrm{G} \pm 0.1$	$\mathrm{~W} \pm 0.2$	$\phi \mathrm{D} 1+0.1$ -0	$\mathrm{~T} \pm 0.1$
2512	3.5	6.7	2.0	1.5	1.75	5.5	4.0	12	1.5	1.0

* Peeling Strength of Top Cover Tape

Test Condition: 0.1 to 0.7 N at a peel-off speed of $300 \mathrm{~mm} / \mathrm{min}$.

* Reel Dimension (mm)

Type	Quantity Per Reel	$\mathrm{A} \pm 0.5$	$\mathrm{~B} \pm 0.5$	$\mathrm{C} \pm 0.5$	$\mathrm{D} \pm 1$	$\mathrm{M} \pm 2$	$\mathrm{~W} \pm 1$
2512	4000 Pcs. Reel	2	13	21	60	178	13.8

Part Number System

Explanation of Part Number System

Thick Film Chip Resistors (Terminal Lead Free)

Sample: \quad RMC $1 \mathrm{~W}(2512)+/-5 \% 1 \mathrm{~K} \Omega \mathrm{~T} / \mathrm{R}--4,000 \rightarrow 25121 \mathrm{WJ} 0102 \mathrm{~T} 4 \mathrm{E}$
RMC 1W (2512) +/- 5\% 0Ω T/R--4,000 $\rightarrow 25121 \mathrm{WJ} 0000 \mathrm{~T} 4 \mathrm{E}$
RMC 1W (2512) +/- 1\% 1K Ω T/R--4,000 \rightarrow 25121WF1001T4E

Thick Film Chip Resistors (Terminal Lead Free)

Environment Related Substance

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.

Ozone layer depleting substances.
Ozone depleting substances are not used in our manufacturing process of this product. This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.

Storage Condition

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $60 \% \mathrm{RH} \pm 10 \% \mathrm{RH}$

Even within the above guarantee periods, do not store these products in the following conditions. Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

1. In salty air or in air with a high concentration of corrosive gas, such as $\mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}_{2}$, or NO_{2}
2. In direct sunlight
